Global Research Syndicate
No Result
View All Result
  • Latest News
  • Consumer Research
  • Survey Research
  • Marketing Research
  • Industry Research
  • Data Collection
  • More
    • Data Analysis
    • Market Insights
  • Latest News
  • Consumer Research
  • Survey Research
  • Marketing Research
  • Industry Research
  • Data Collection
  • More
    • Data Analysis
    • Market Insights
No Result
View All Result
globalresearchsyndicate
No Result
View All Result
Home Data Analysis

Quantile Regression: Is the Whole Greater than the Sum of the Parts? – Predictive Analytics Times

globalresearchsyndicate by globalresearchsyndicate
November 23, 2019
in Data Analysis
0
Quantile Regression: Is the Whole Greater than the Sum of the Parts? – Predictive Analytics Times
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter

By: Sam Koslowsky, Senior Analytic Consultant, Harte Hanks

A key metric that marketers track involves customer life time value. With the proliferation of segment managers, and the availability of ‘BIG’ data, there has been an ever-increasing need to both evaluate and model this all-important measure.  The old 80/20 (or perhaps 90/10) rule maintains that the preponderance of profit emanates from a few valuable customers.  By definition, this implies that the distribution of this profitability yardstick is quite skewed. The graph below better depicts this relationship.

Much of the profit emerges from the top quintile. Little emanates from the bottom 20%. Yet, many analysts, appear to ignore this distortion as they proceed to model customer value. Some might not realize it even exists.

This bias typically results in development of one model where all the predictors are applied evenly to all customers. What is produced is a single model-the ‘mean’ result. It seems to make sense that higher profit customers may very well be influenced by a different dynamic than lower valued ones.  How does the marketer deal with this phenomenon?

Analytics provides researchers basic and more advanced approaches to analyze data. In the basic setting, a manager may compute, for example, the average value of age and then associate it with profitability. A simple regression formulation would generate this relationship. While this, so called, average statistic, does provide limited information, it certainly is somewhat deficient.

Imagine a marketing manager that is reviewing his sales trend. He records the following historical values:

A naïve estimate of sales for the next ‘period’ might be derived through a simple linear regression analysis. This would be 6321.75. This prediction does not appear to be especially informative. However, if we construct different ‘cuts’ of the data, say quintiles, we may arrive at a somewhat more useful result. Look at the estimates below.

PERCENTILE ESTIMATE
5% 40.7
50% 127.5
95% 21274.75

As another simple illustration, suppose we learn that customer value (or profitability) increases $4.13 if two or more children are present in the household. Should we be satisfied with that? Is there a way of gaining some more insight? Take a look at the following visual.

Presence of children plays more of an important role for higher levels of profitability (profitability increases $7.82 for presence of children for high profitability households vs. $2.16 for lower valued ones)!

Analysts typically employ a variety of regression techniques to measure the relationship of customer attributes and socio demographic characteristics with customer value.  These are accomplished assuming that the regression coefficients or weights are constant across the population – in other words, the relationships between the dependent variable and the independent variables remain the same across different values of the variables.

Let’s work with a reduced a data set emanating from a large retail chain, that contains customer profitability, along with typical predictors that may be found in a data mart. For the sake of simplicity, the final analysis developed for modeling profitability consists of four YES/NO type variables. These are:

  1. Marital status
  2. Investable asset greater than $150k
  3. Ordered via retailer’s Ecommerce site
  4. College graduate

The resulting model developed appears below.

This model gauges how, on average, the above variables, impact customer profitability. For example, the MARRIED variable evaluates the effect of being married vs. being single on customer profitability. Being married adds $15.40 to an individual’s customer value. While the above analysis can shed some light on the question “is being married important?”, it cannot respond to another critical matter: “does being married impact customer profitability more for those with higher profitability than those with average or low profitability? “.

Enter Quantile regression. Quantile regression models the association between a set of predictor variables and specific percentiles (or quantiles) of the dependent variable. It examines changes in the quantiles of the dependent variable.  Take the first quintile (20%) of customer profitability. Quantile regression at this level relates customer profitability at the first quintile to our predictors. Don’t get confused. Quantile regression is not a regression estimated on a quantile, or subsample of data as the name may suggest.

Let’s return to the simplified, yet informative, example introduced above. We will invoke the Quantile regression procedure (we’ll get to the various programs that do this a bit later on), and model at the 25th, 50th and 75th percentiles. It is instructive to observe how our coefficients change at each level of analysis. First a table depicting these weights, and then a pictorial view to further highlight the results.

The total column reproduces what we saw above, and would be the typical output available via a linear regression analysis. Quantile regression addresses the issue of whether these coefficients apply equally as well, across all segments. The columns labeled ‘25th’ 50th and 75th contain the coefficients that the Quantile regression generated at that particular level. Let’s examine each variable separately.

It’s clear from the graph that more profitable customers appear to be less likely to be married, and the pattern is well-defined.

Also, an unambiguous pattern-more profitable customers are associated with this asset level base.

While asomewhat less pronounced, ordering via Ecommerce is more influential for the lower profitability segment.

Being a college graduate is telling. Earning your college diploma is ‘good’ for higher profitable customers, and significantly poorer for the lower quantiles.

In case you’ve never used QR (quantile regression), It is supported by a wide variety of procedures. Some of these include:

  • R offers several packages that implement quantile regression, most notably quantreg
  • SAS through proc quantselect
  • Statsmodels package for Python, via QuantReg
  • Stata, via the qreg command.
  • Matlab function quantreg
  • Mathematica package QuantileRegression.m
  • SPSS via the R addon Quantile regression

Some of the less know benefits of employing quantile regression include a reduced concern with outlier influences, generally more meaningful analysis, and the ability to discern the diverse effects of predictors at different levels of the dependent variable.

The real significance for marketers is that it presents a more potent approach as we move from a single picture of the universe (ordinary least squares regression) to a more focused view of targeted segments. By analyzing the higher quantile regression model, we can obtain more reliable estimates of profit. And, we have the opportunity to secure the key components required to enhance marketing programs.

And, at the end of the day, that should be our objective-learn more to further improve our marketing campaigns.

About the Author

Sam Koslowsky serves as Senior Analytic Consultant for Harte Hanks. Sam’s responsibilities include developing quantitative and analytic solutions for a wide variety of firms. Sam is a frequent speaker at industry conferences, a contributor to many analytic related publications, and has taught at Columbia and New York Universities. He has an undergraduate degree in mathematics, an MBA in finance from New York University, and has completed post-graduate work in statistics and operations research.


Related Posts

How Machine Learning has impacted Consumer Behaviour and Analysis
Consumer Research

How Machine Learning has impacted Consumer Behaviour and Analysis

July 12, 2023
Market Research The Ultimate Weapon for Business Success
Consumer Research

Market Research: The Ultimate Weapon for Business Success

June 29, 2023
Unveiling the Hidden Power of Market Research A Game Changer
Consumer Research

Unveiling the Hidden Power of Market Research: A Game Changer

June 29, 2023
7 Secrets of Market Research Gurus That Will Blow Your Mind
Consumer Research

7 Secrets of Market Research Gurus That Will Blow Your Mind

June 29, 2023
The Shocking Truth About Market Research Revealed!
Consumer Research

The Shocking Truth About Market Research: Revealed!

June 29, 2023
market research, primary research, secondary research, market research trends, market research news,
Consumer Research

Quantitative vs. Qualitative Research. How to choose the Right Research Method for Your Business Needs

June 29, 2023
Next Post
Tomato politics over the years | Pakistan

Tomato politics over the years | Pakistan

Categories

  • Consumer Research
  • Data Analysis
  • Data Collection
  • Industry Research
  • Latest News
  • Market Insights
  • Marketing Research
  • Survey Research
  • Uncategorized

Recent Posts

  • How Machine Learning has impacted Consumer Behaviour and Analysis
  • Market Research: The Ultimate Weapon for Business Success
  • Unveiling the Hidden Power of Market Research: A Game Changer
  • Privacy Policy
  • Terms of Use
  • Antispam
  • DMCA

Copyright © 2023 Globalresearchsyndicate.com

No Result
View All Result
  • Latest News
  • Consumer Research
  • Survey Research
  • Marketing Research
  • Industry Research
  • Data Collection
  • More
    • Data Analysis
    • Market Insights

Copyright © 2023 Globalresearchsyndicate.com

Login to your account below

Forgotten Password?

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT